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Abstract

We show that classical electrodynamics of massless charged particles and the
Yang–Mills theory of massless quarks do not experience rearranging their initial
degrees of freedom into dressed particles and radiation. Massless particles
do not radiate. We propose a conformally invariant version of the direct
interparticle action theory for these systems.

PACS numbers: 03.50.De, 03.50.Kk

1. Introduction

Rearrangement of the initial degrees of freedom appearing in the Lagrangian is a salient
manifestation of self-interaction in field theory. The term ‘rearrangement’ was coined by
Umezawa [1] who looked at spontaneous symmetry breaking for the presentation of advantages
of this concept. The mechanism for rearranging classical gauge fields was further studied in
[2–5]. What is the essence of this mechanism? While having unlimited freedom in choosing
dynamical variables for describing a given field system, preference is normally given to
those variables which are best suited for implementing fundamental symmetries. However,
some degrees of freedom so introduced, if not all, are dynamically unstable. This gives rise to
assembling the initial degrees of freedom into new, stable modes. For example, the Lagrangian
of quantum chromodynamics is expressed in terms of quarks and gluons. If a system with these
degrees of freedom would exhibit open color, there appears to be no reason for maintaining this
system stable. Quarks and gluons combine in color–neutral clusters, hadrons and glueballs,
in the cold phase, or else they form a lump of color–neutral quark–gluon plasma (QGP) in the
hot phase. One further example is the Maxwell–Lorentz theory which is initially formulated
in terms of mechanical variables zμ(s) describing world lines of bare charged particles and
the electromagnetic vector potential Aμ(x). The retarded interaction between these degrees of
freedom makes them unstable, causing their rearranging into new dynamical entities: dressed
charged particles and radiation [5].

There are exceptional systems. Their initial degrees of freedom remain unchanged under
switching-on the interaction. Our interest here is with two theories of this kind: classical
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electrodynamics of massless charged particles and the Yang–Mills–Wong theory of massless
colored particles. These theories have one property in common, conformal invariance. Owing
to this symmetry, self-interaction does not create the renormalization of mass.

Conventional wisdom says that an accelerated charge emits radiation. However, we will
see below that the net effect of radiation for a massless charged particle is compensated
by an appropriate reparametrization of the world line. In other words, both radiation and
dressing are absent from this theory. Classical electrodynamics of massless charged particles
do not experience rearranging. It will transpire in section 2 that classical electrodynamics
of massless charged particles is not a smooth limit of classical electrodynamics of massive
charged particles. Conformal invariance has a dramatic effect on the picture as a whole: if
this symmetry is broken, as in electrodynamics of massive charged particles, self-interaction
is different from that of conformally invariant systems1.

This argument is with minor modifications translated into a system of massless colored
particles governed by the Yang–Mills–Wong dynamics. It is conformal invariance which
is responsible for the lack of the mass renormalization. Furthermore, with this symmetry,
the dynamics is constrained to the Abelian regime: the Cartan subgroup of the gauge group
accommodates all the retarded field configurations.

Leptons of zero mass do not appear to exist. Nevertheless, the interest in a point
charge moving at the speed of light is sometimes expressed in the literature [7, 8]. On
the other hand, it is conceivable that quarks in QGP reveal themselves as massless particles.
If a lump of QGP is formed in a collision of heavy ions, such as an Au + Au collision
in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven, then deconfinement triggers
the chiral symmetry-restoring phase transition, whereby quarks become massless. As the
data from RHIC measurements suggest (for a review see, e.g., [9]), the equation of state
for QGP (pressure as a function of the energy density) above the transition temperature
Tc ∼ 160 MeV is approximately p = 1

3ε, which is peculiar to a relativistic gas of massless
particles2. The conformally invariant dynamics of massless particles discussed in this paper
provides a laboratory for studying the properties of QGP.

The plan of the paper is as follows. In section 2, we briefly review the general properties of
a conformally invariant classical system of massless charged particles in Minkowski spacetime
R1,3. We point out that the principle of least action defies formulation for such systems. The
reason for this is simple: in order that the Lagrangian be specified, a definite number of
particles must be fixed. However, transformations of the conformal group C(1, 3) convert
a single world line into a two-branched world line, and hence do not preserve the number
of particles. In section 3, we consider the retarded electromagnetic field Fμν generated
by a charge moving along a smooth lightlike world line. In section 4, we show that the
radiation term of a massless charged particle drops out of the total energy–momentum balance
equation. In section 5, classical electrodynamics of massless charged particles is recasted into
a conformally invariant action-at-a-distance theory. The Yang–Mills–Wong theory of massless
quarks is discussed in section 6. A central result of this section is that retarded solutions to
the Yang–Mills equations with the source composed of massless quarks are Abelian. This is
because these solutions are invariant under C(1, 3). In section 7, we compare the Yang–Mills–
Wong theories of massive and massless quarks. We then propose a path-integral description

1 If conformal invariance is overlooked, as is the case in [6], then one can form the wrong impression of this system
as that capable of the usual rearranging.
2 In fact, for moderate temperatures ∼Tc accessible at RHIC, we are dealing with a strongly coupled perfect fluid
rather than an ideal Stefan–Boltzmann gas. This is the most perfect fluid ever observed: the ratio of the QGP shear
viscosity η to its entropy density s is about 0.1. For reference, liquid helium is characterized by η/s ∼ 10.
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of directly interacting massless colored particles. Some technical statements of sections 3 and
4 are justified in appendices A and B.

We adopt the metric ημν = diag(1,−1,−1,−1), and follow the conventions of [5]
throughout. The procedure of obtaining retarded solutions to classical gauge theories, without
resort to Green’s functions [3, 5] is represented at sufficient length to enable one to trace
manipulations with singular distributions and have confidence in their validity.

2. Massless charged particles

Imagine a particle which is moving along a smooth null world line,

ż2(τ ) = 0. (1)

Here, zμ stands for the world line parametrized by a monotonically increasing parameter τ .
Derivatives with respect to τ are denoted by overdots. It follows from (1) that

ż · z̈ = 0. (2)

Since żμ is lightlike, z̈μ may be either spacelike or lightlike, aligned with żμ. Let z̈2 < 0.
Then the trajectory is bent. As an example, we refer to a particle which orbits in a circle of
radius r at an angular velocity of 1/r . The history of this particle is depicted by a helical null
world line of radius r wound around the time axis. The helix makes a close approach to the
time axis as r → 0. Note that, on a large scale, this particle traverses timelike intervals.

If z̈2 = 0, then z̈μ and żμ are parallel, and the trajectory is straight. Although we have
nonzero components of z̈μ, the motion is uniform. Indeed, whatever the evolution parameter
τ , the history is depicted by a straight null world line. We thus see that z̈μ is, in this case,
a fictitious acceleration. The occurrence of z̈μ is an artifact of the choice of τ used for
parametrizing the world line.

A massless particle of charge e is governed by

εμ = ηz̈μ + η̇żμ − eżνF
μν(z) = 0, (3)

where η is an auxiliary dynamical variable, called einbein. Formally, equation (3) derives
from the action3

S = −
∫ τ ′′

τ ′
dτ

(
1

2
ηż2 + eż · A

)
, (5)

which was first proposed in [10]. Furthermore, varying η in (5) we come to (1).
The action (5) is reparametrization invariant if the transformation laws for η and zμ are

assumed to be, respectively, of the form

δη = ε̇η − εη̇, (6)

δzμ = εżμ. (7)

Here, ε is an infinitesimal reparametrization: δτ = ε. Under finite reparametrizations, τ → τ̄ ,
the einbein transforms as

η → η̄ = dτ̄

dτ
η. (8)

3 The kinetic term of the action (5) can be extended to include spin degrees of freedom. With real elements of a
Grassmann algebra θμ and θ5, the action for a free massless spinning particle reads

S = −
∫ τ ′′

τ ′
dτ

[
1

2
ηż2 +

i

2
(θ̇μθμ + θ̇5θ5) + iχθμżμ

]
+

i

2
[θμ(τ ′)θμ(τ ′′) + θ5(τ

′)θ5(τ
′′)], (4)

where χ is a Grassmann-valued Lagrange multiplier (for details see, e.g., [11], and references therein). In addition to
reparametrization symmetry, the action (4) is invariant under local (τ ) and global (xμ) supersymmetry transformations.
However, we do not explore this supersymmetric extension in the present paper.
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In view of this invariance, we are entitled to handle the reparametrization freedom making
the dynamical equations as simple as possible. In particular, for some choice of the evolution
parameter τ , the einbein can be converted to a constant, η = η0, and (3) becomes

η0z̈
μ = eżνF

μν(z). (9)

Consider a system of N massless charged particles. They generate the electromagnetic
field Fμν according to Maxwell’s equations,

Eλμν = ∂λFμν + ∂νF λμ + ∂μF νλ = 0, (10)

Eμ = ∂νF
μν + 4πjμ = 0, (11)

jμ(x) =
N∑

I=1

eI

∫ ∞

−∞
dτI ż

μ

I (τI )δ
4[x − zI (τI )]. (12)

Equations (1), (3) and (10)–(12) are basic for the subsequent analysis. Joint solutions to
these equations will in principle tell us all we need to know about the behavior of this closed
system of N massless charged particles and electromagnetic field.

At first glance it would seem that the whole dynamics is encoded in the action

S = −
N∑

I=1

1

2

∫ τ ′′

τ ′
dτI ηI ż

2
I −

∫
d4x

(
jμAμ +

1

16π
FμνF

μν

)
. (13)

Indeed, varying ηI , z
μ

I and Aμ gives (1), (3) and (11). Furthermore, the stress–energy tensor
associated with (13) is Tμν = tμν + μν, where

tμν(x) =
N∑

I=1

∫ ∞

−∞
dτI ηI (τI )ż

I
μ(τI )ż

I
ν(τI )δ

4[x − zI (τI )], (14)

μν = 1

4π

(
Fα

μFαν +
ημν

4
FαβFαβ

)
. (15)

Evidently

T μ
μ = 0. (16)

This implies invariance under the group of Weyl rescalings in four dimensions, and hence
conformal invariance [12].

In fact, such is the case only when it is granted that spacetime is equipped with Euclidean
signature (+ + ++). We then are entitled to regard equation (13) as the action which implies
the dynamical equations (1), (3) and (11)–(12), and renders Tμν traceless.

On the assumption of Lorentzian signature (+ − −−), the principle of least action for a
particle moving along a null world line defies precise formulation. Consider a null curve with
endpoints separated by a timelike interval. A transformation of the conformal group C(1, 3)

can map these points so that their images have a spacelike separation. Hence, the conventional
Lagrangian setting is not compatible with the requirement of conformal invariance. On the
other hand, if the signature (+ − −−) is changed by (+ + ++), then the distinction between
timelike and spacelike intervals disappears, and conformal symmetry, entrusted to the group
C(4), presents no special problem.

Let us suppose that the integration limits in (13) are extended from the remote past to
the far future. The group C(1, 3) maps an infinite null curve to other infinite null curves.
Rosen [13] suggested to consider transformations of C(1, 3) as leaving both spacetime and the
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coordinate system unaffected but serving to map only the world lines of charged particles and
field configurations generated by these particles. With this interpretation in mind, we come
to a remarkable result: any null curve, different from a straight line, can be transformed to a
two-branched null curve. The transformed picture displays the presence of two particles, or,
more precisely, a particle and an antiparticle (for more details see [5], section 5.3). Therefore,
the number of particles is not preserved by C(1, 3).

The Lagrangian description assumes fixing a definite number of particles N. However,
in this case we have a completely different situation. There is an infinite set of layouts with
different N related to each other by conformal transformations. Every physically valid picture
described by a simultaneous solution to Maxwell’s equations (10)–(12) and the dynamical
equations for massless charged particles (1) and (3) can be obtained via a transformation of the
group C(1, 3) from a particular picture. We note that the effect of C(1, 3) on a given system
is not the mere running over states of this system; conformal transformations may substitute
this system with other feasible systems.

In contrast, given Euclidean signature, a single layout with a fixed number of particles
turns out to be invariant under the conformal group. What is the reason for this drastic
distinction between a theory invariant under C(1, 3) and its Euclidean conterpart invariant
under C(4)? Let us take a closer look at a special conformal transformation

xμ → x ′
μ = xμ − bμx2

1 − 2b · x + b2x2
. (17)

The denominator can be rewritten as

1 − 2b · x + b2x2 = b2(x − a)2, aμ = bμ/b2. (18)

In Minkowski spacetime R1,3, the mapping (17) is singular at the light cone (x − a)2 = 0.
Any null curve, different from a straight line, intersects this cone twice. One intersection point
is mapped onto the remote past, while the other point is mapped onto the far future. This is
another way of stating that the transformed curve is two branched. In Euclidean spacetime
R4, the mapping (17) is singular at a single point xμ = aμ. If a curve does not pass through
aμ, none of the points on this curve is mapped onto infinity.

One further remark is in order. It is not sufficient to specify the Lagrangian if we are to
define a classical theory. In addition, we fix geometry, boundary conditions, and a class of
allowable functions which represents the space of dynamically realizable configurations. One
can envision that some Lagrangian is well suited to a particular geometry (in the sense that the
principle of least action is consistently formulated) and yet incompatible with a contiguous
geometry. It is just the Lagrangian shown in (13) whose definition displays extreme sensitivity
to switching between Euclidean and Lorentzian signatures. It seems appropriate to begin with
the Lagrangian formulation in R4. Thereafter, we attempt at grafting the equations of motion
and other dynamical structures onto R1,3 by an analytical continuation from R4.

For comparison purposes, we turn to the dynamics of a massive particle. The action for a
particle of mass m interacting with an external electromagnetic field reads

S = −
∫ τ ′′

τ ′
dτ

[
1

2

(
ηż2 +

m2

η

)
+ eż · A

]
. (19)

It is well known that the principle of least action for (19) is consistently formulated in both R4

and R1,3. Varying zμ we again come to (3). However, variation of η results in

ż2η2 − m2 = 0. (20)

5
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Since ż2 > 0, one can readily solve this equation to show that η is fixed at the extremals:
η = m/

√
ż · ż. Combining (20) and (3) we arrive at the familiar equation of motion for a

massive particle, parametrized by the proper time ds = dτ
√

ż · ż,

mz̈μ = eżνF
μν(z), (21)

where the overdot denotes the derivative with respect to the proper time.
The action for a massive particle (19) becomes the action for a massless particle (5) as

m → 0, which, however, does not imply that the dynamics of a massive particle tends to
the dynamics of a massless particle in this limit. The gist of the dissimilarity is in the sets
of allowable world lines. For m �= 0, the set S of allowable world lines associated with the
action (19) consists of smooth timelike curves, while, for m = 0, the corresponding set S0

associated with the action (5) involves smooth null curves. Both S and S0 are invariant under
C(1, 3) in the sense that the image of a timelike curve is timelike and the image of a null curve
is null, but the sets S and S0 do not share common elements.

For m �= 0,

tμμ (x) = m

∫ ∞

−∞
ds δ4[x − z(s)], (22)

and so

T μ
μ �= 0. (23)

We thus see that if timelike curves are among the allowable world lines, then the theory does not
enjoy the property of conformal invariance. This argument can be reversed. A conformally
invariant theory is not a smooth limit of a related theory in which conformal invariance is
broken; these theories are divorced just because their associated sets of allowable world lines,
S and S0, do not overlap.

3. Electromagnetic field due to a massless charged particle

Consider a charge which is moving along a smooth null world line. We set e1 = e, e2 = e3 =
· · · = 0 in (12), and look for an exact solution to Maxwell’s equations (10)–(12) using the
covariant retarded variable technique similar to that developed in [2–5]. We define the vector
Rμ = xμ − zμ(τret) drawn from the point on the world line where the retarded signal was
emitted, zμ(τret), to the point xμ where the signal was received. The constraint R2 = 0 implies

∂μτ = Rμ

R · ż
. (24)

From here on, we omit the subscript ‘ret’.
The scalar

ρ = R · ż (25)

measures the separation between zμ(τret) and xμ. Indeed, let us choose a particular Lorentz
frame in which

żμ = (1, 0, 0, 1), Rμ = r(1, n) = r (1, sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) . (26)

Here ϑ and ϕ are zenith and azimuth angles, respectively. From R · ż = r(1 − cos ϑ) it
follows that ρ varies smoothly from 0 to ∞ as xμ moves away from zμ(τret), except for
the case that Rμ points in the direction of żμ. The variables τ, ρ, ϑ, ϕ are an alternative to
Cartesian coordinates. An obvious flaw of these coordinates is the presence of singular rays
R̂μ aligned with the tangent vectors żμ. Note that the surface swept out by the singular ray
R̂μ is a two-dimensional warped manifold M2.

6
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Combining (24) and (25) gives

∂μτ = Rμ

ρ
= cμ. (27)

Accordingly,

∂μρ = żμ + cμ[(R · z̈) − ż2]. (28)

We retain the term −cμż2 (which is identically zero unless the constraint ż2 = 0 is ignored)
in (28) for later use. Introducing one more retarded scalar

λ = (R · z̈) − ż2, (29)

we come to the differentiation rule

∂μρ = żμ + λcμ, (30)

which is universally applicable to both timelike and null world lines.
Following the line of [2–5], the appropriate ansatz is given by

Aμ = żμ�(ρ) + Rμ�(ρ). (31)

We use the differentiation rules (27) and (30) to yield

Fμν = RμUν − RνUμ, (32)

ρUν = z̈ν� + żν(λ�′ − � − ρ� ′) (33)

and

∂μFμν = 2Uν + (R · ∂)Uν +
żν

ρ
(R · U) − Rν(∂ · U). (34)

Since our main interest here is with the retarded solution to Maxwell’s equations outside the
world line, we equate to zero the coefficients of the three linearly independent vectors z̈ν , żν

and Rν . In the latter case, we equate to zero separately the coefficients of (R · ...
z), (R · z̈)2,

and the sum of remaining terms of the coefficient of Rν . We thus arrive at an overdetermined
system of ordinary differential equations with � and � as the unknown functions. Integrating
this system is easy, so that we omit this part of mathematical treatment, and turn to the net
result. The retarded solution to Maxwell’s equations (10)–(11) is given by

Aμ = q
żμ

ρ
, (35)

modulo gauge terms proportional to Rμ/ρ = ∂μτ . Here, q is an integration constant.
Of course, Maxwell’s equations (10)–(12) can be conveniently solved using Green’s

function method. Again, the retarded solution Aμ takes the form of equation (35), with q
being equal to e. However, the above procedure will prove useful (in fact the only available)
in looking for retarded solutions to the Yang–Mills equations.

The retarded electromagnetic field due to a charge moving along a null world line is

Fμν = F r
μν + F ir

μν. (36)

The first term F r
μν (r for regular) is

F r
μν = RμVν − RνVμ, (37)

Vμ = q

ρ2

(
−żμ

z̈ · R

ρ
+ z̈μ

)
. (38)

7
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The second term F ir
μν (ir for irregular) is

F ir
μν = q

ż2

ρ2
(cμżν − cν żμ). (39)

This term is everywhere zero except for the surface M2 formed by the singular rays R̂μ.
The reader may wish to circumvent the procedure of integrating Maxwell’s equations,

but content himself (or herself) with verifying that the retarded field (36)–(39) is indeed the
desired solution. This can be done through the use of the formulae

R · V = 0, (40)

∂ · V = 1

ρ2

[
(z̈ · c) − 1

2

d

dτ

]
ż2, (41)

and

(R · ∂)ρ = ρ, (R · ∂)V μ = −2V μ. (42)

We note in passing the relations

ż · V = − q

ρ2

[
(z̈ · c) − 1

2

d

dτ

]
ż2, (43)

V 2 = q2 z̈2

ρ4
, (44)

which will be useful in the subsequent discussion.
Let M4 be all spacetime minus the singular manifold M2. For the regular part of the

electromagnetic field F r
μν , both invariants P = 1

2
∗FμνF

μν and S = 1
2FμνF

μν are vanishing

in M4. Therefore, a massless charged particle generates the retarded electromagnetic field
whose regular part is a null field in M4.

We determine the constant of integration q in (35), (38) and (39) by invoking Gauss’ law.
We first find the total flux of Eir through a sphere enclosing the charge e. We choose a Lorentz
frame in which żμ and Rμ take the form of (26), and integrate F ir

0i over a sphere r = �,∫
dS · Eir = eż2

∫ 2π

0
dϕ

∫ π

0
dϑ

sin ϑ

(ż0 − |ż| cos ϑ)2
= 4πq. (45)

It is shown in appendix A that this surface integral of Er is zero. Therefore, q = e.
We thus see that the total flux of Eir, concentrated on the singular ray R̂μ which issues

out of the charge e, is 4πe. This resembles the Dirac picture of a magnetic monopole: the
magnetic field B due to this monopole shrinks in a string. This string begins at the magnetic
charge and goes to spatial infinity, so that the total flux of B flowing along the string equals
the magnetic charge times the factor 4π .

It may be worth pointing out that the factor ż2 disappears from equation (45) because
it is canceled by the identical factor that arose in the denominator owing to the solid angle
integration of ρ−2. If we would have ρ−s with s other than 2, then this mechanism would fall
short of the required cancellation. In particular, a similar surface integral of the stress–energy
tensor term quadratic in F ir

μν is zero (see appendix B).
This consideration can be readily adapted to the advanced boundary condition. The

advanced covariant technique can result from the retarded covariant technique if ż is substituted
for −ż in every pertinent relation.

8
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4. Massless charged particles do not emit radiation

We now look for a joint solution to the set of equations (10)–(12), (1) and (3). We begin with
the Noether identity

∂μT λμ = 1

8π
EλμνFμν +

1

4π
EμFλμ +

∫ ∞

−∞
dτ ελ(z)δ4[x − z(τ )]. (46)

Here, T μν = tμν + μν is the symmetric stress–energy tensor of this system, tμν and μν

are given by (14) and (15), Eλμν, Eμ, and ελ are the left-hand sides of (10), (11) and (3),
respectively. Were it not for divergences, the local conservation law for the stress–energy
tensor ∂μT λμ = 0 would imply that both the equation of motion for bare particles ελ = 0 and
the field equations Eμ = 0 and Eλμν = 0 simultaneously hold.

We first discuss the case that only a single particle is in the universe. Assume that Eλμν = 0
but Eμ is nonzero. Then Fμν may be regarded as a regular field vanishing sufficiently fast
at spatial infinity. We use (14) and (15) in (46), integrate this equation over a domain of
spacetime U bounded by two parallel spacelike hyperplanes �′ and �′′ with both normals
directed toward the future, and a tube TR of large radius R. Applying the Gauss–Ostrogradskiı̌
theorem, we obtain(∫

�′′
−

∫
�′

+
∫

TR

)
dσμλμ +

∫ τ ′′

τ ′
dτ(η̇żλ + ηz̈λ) = 1

4π

∫
U

d4x EμFλμ +
∫ τ ′′

τ ′
dτ ελ. (47)

Here, the relation

żμ ∂

∂xμ
δ4[x − z(τ )] = −dzμ

dτ

∂

∂zμ
δ4[x − z(τ )] = − d

dτ
δ4[x − z(τ )] (48)

has been used to evaluate the integral of ∂μtλμ.
However, our concern here is with the case Eμ = 0. As soon as the field Fμν is taken

to be the retarded solution (36)–(39), equation (47) becomes divergent. To proceed further, a
regularization is essential. The singularity must be smeared out over a region bounded by a
tube Tε of small radius ε enclosing the world line. The regularization scheme may be arbitrary;
the only requirement is that it respect the initial symmetries. We can conveniently use a cutoff.
The cutoff prescription is to put Fμν = 0 within a tube enclosing the world line. To be more
specific, we define Reg ελ by an appropriate regularization of the left-hand side of (47),(∫

�′′(ε)
−

∫
�′(ε)

+
∫

TR

)
dσμλμ +

∫ τ ′′

τ ′
dτ(η̇żλ + ηz̈λ) =

∫ s ′′

s ′
ds Reg ελ. (49)

The cutoff prescription implies perforating the hyperplanes, so that �′(ε) and �′′(ε) are the
perforated hyperplanes with holes of radius ε around the points of their intersection with the
world line.

We now assume that

Reg ελ = 0. (50)

This gives (∫
�′′(ε)

−
∫

�′(ε)
+

∫
TR

)
dσμλμ +

∫ τ ′′

τ ′
dτ(η̇żλ + ηz̈λ) = 0. (51)

This equation represents energy–momentum balance of the whole system ‘a massless
particle plus its field’ written in terms of the initial degrees of freedom. We express λμ in
terms of the retarded solution (36)–(39), and integrate it over �′(ε) and �′′(ε) to obtain the
corresponding 4-momenta of the electromagnetic field.

9
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To ensure Lorentz invariance of this cutoff procedure, we take a hyperplane � whose
normal is directed along the world line at the point of their intersection. Suppose this
hyperplane is intersected by the world line at an instant τ . We define the associated lagging
instant τ̂ = τ − ε with an infinitesimal time lag ε, and draw the future light cone C+ from
zμ(τ̂ ). We then delete all points of � which fall in the interior of the intersection of � and
C+. This gives an invariant (coordinate free) hole on �, and renders � the desired perforated
hyperplane �(ε). Besides, a truncated future light cone C+(ε) is manufactured in this way.

The integration surface �(ε) can be replaced by the surface formed by the truncated
future light cone C+(ε) drawn from the world line at the lagging instant τ̂ and a tube TR of
large radius R enveloping the world line. To see this, we note that the region bounded by
�(ε), C+(ε), and TR is free of sources: ∂μλμ = 0.

A remarkable fact is that the integral over C+(ε) is completely due to the contribution
of the ‘near’ part of the stress–energy tensor 

μν

I , containing terms proportional to ρ−3

and ρ−4; the ‘far’ part of the stress–energy tensor 
μν

II , which goes like ρ−2, yields zero flux
through the future light cone. It is demonstrated in appendix A that integrating μν over C+(ε)

gives zero. This is just the required result; otherwise we would invoke the renormalization of
mass which is problematic in the theory free of dimensional parameters.

Consider the far part of the stress–energy tensor 
μν

II . By (37), (38), (40) and (44),


μν

II = − e2

4π

z̈2

ρ4
RμRν. (52)

Since 
μν

II behaves like ρ−2, this part of the stress–energy tensor involves integrable
singularities near the world line. It remains to manage the ray singularity. A pertinent
regularization prescription is to delete the intersection of the integration surface with the
singular two-dimensional manifold M2.

Let us evaluate the 4-momentum associated with 
μν

II . It is convenient to deform
the surface of integration from � to the more geometrically motivated surface formed by
combining the future light cone with a tubular hypersurface Tρ enclosing the world line.
Indeed, the flux of 

μν

II through the future light cone is zero. Furthermore, the area of Tρ

scales as ρ2 while 
μν

II behaves as ρ−2. A tubular surface T� of a small radius r = � enclosing
the world line is best suited to our purposes. In a particular Lorentz frame, the surface element
is

dσμ = nμ�2 d� dτ, nμ = (0, n). (53)

Combining (53) with (52) and (26), we obtain


μν

II dσν = −e2z̈2

4π

(
1

1 − cos ϑ

)4

(1, sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) sin ϑ dϑ dϕ dτ, (54)

and so

P
μ

II =
∫

T�

dσν 
μν

II = −2

3
e2�

∫ τ

−∞
dτ żμz̈2. (55)

Here, � = 4δ−6, with δ being a small number, the lower limit of integration over ϑ , required
from the regularization prescription to smear the ray singularity. In the last equation of (55), we
have omitted finite terms which are negligibly small in comparison with the term proportional
to δ−6 in the limit δ → 0.

If we impose the asymptotic condition

lim
τ→−∞ z̈μ(τ ) = 0, (56)

10
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then the integral over TR in (51) approaches zero as R → ∞ just as it does in classical
electrodynamics of massive charged particles [5].

At first sight, it is possible to interpret P μ

II as the 4-momentum which is radiated by a charge
moving along a null world line. However, close inspection shows that the contribution of P

μ

II to
the energy–momentum balance equation can be absorbed by an appropriate reparametrization
of the null curve. We use (55) in (51) to make sure the net effect of P

μ

II is gauge removable,∫ τ ′′

τ ′
dτ

(
η̇żλ + ηz̈λ − 2

3
e2�z̈2żλ

)
= 0. (57)

The first and the last terms have similar kinematical structures. This suggests that there is a
particular parametrization τ̄ such that these terms cancel. To verify this suggestion, we go
from τ to τ̄ through the reparametrization4

dτ = dτ̄

[
1 +

1

η̄(τ̄ )

2

3
e2�

∫ τ

−∞
dσ z̈2(σ )

]
. (58)

By (8),

η(τ) = η̄(τ̄ ) +
2

3
e2�

∫ τ

−∞
dσ z̈2(σ ), (59)

and so

η̇(τ ) = ˙̄η(τ̄ ) + 2
3 e2�z̈2(τ ). (60)

Here, the dot denotes the differentiation with respect to τ . If we fix the gauge by imposing the
condition η̄(τ̄ ) = η0, and take into account that dτ̄ (dzλ/dτ̄ ) = dτ(dzλ/dτ), then we find that
the first and the last terms of (57) cancel out which makes the integrand to be identical to the
left-hand side of (9).

This analysis can be extended to a system of several interacting massless particles. Since
the general retarded solution to Maxwell’s equations is the sum of fields generated by each
particle, equations (36)–(39)5, the stress–energy tensor becomes

μν =
∑

I


μν

I +
∑

I

∑
J


μν

IJ , (61)

where 
μν

I is comprised of the field F
μν

I due to the Ith charge, and 
μν

IJ contains mixed
contributions of the fields generated by the Ith and the J th charges. Following the conventional
procedure, we integrate 

μν

IJ over a tubular surface T�I
of a small radius �I enclosing the Ith

world line. Without going into detail we simply outline the general idea. The leading
singularity, a pole ρ−2, comes from the irregular term F ir

μν , while the regular term F r
μν is not

sufficiently singular to make a finite contribution to the integral over T�I
in the limit �I → 0.

In response to the solid angle integration of ρ−2, the denominator gains the factor ż2 which
kills the same factor in the numerator of F ir

μν , just as it did in establishing (45). The result is

℘
μ

I =
∫

T�I

dσν

∑
J


μν

IJ = −eI

∫ τI

−∞
dτI

∑
J

F
μν

IJ (zI )ż
I
ν(τI ), (62)

where F
μν

IJ (zI ) is the retarded field at zI caused by charge J . We interpret ℘
μ

I as the 4-
momentum extracted from an external field F

μν

IJ (zI ) during the whole past history of charge I

4 In fact, (58) and (8) constitute a set of two functional-differential equations with τ̄ = X(τ) and η̄ = Y [η(τ); τ̄ (τ )]
as the unknown functions. It is expected that there exist a positive, regular solutions to these equations.
5 For simplicity, we omit solutions to the homogeneous field equations describing a free electromagnetic field. If
need be, this field could be taken into account in the final result.

11



J. Phys. A: Math. Theor. 41 (2008) 465401 B P Kosyakov

prior to the instant τI . To put it differently, ℘̇
μ

I is an external Lorentz force exerted on the Ith
particle at zI .

Let us compare these results with those obtained in the Maxwell–Lorentz theory of
massive charged particles. It would be reasonable to begin with the Noether identity (46) in
which T λμ, Eλμν, Eμ and ελ take the same form in both massive and massless cases. For a
particle of mass m �= 0, the usual way to explore this identity further is to consider η to be a
solution of the constraint equation (20), which implies that the world line is parametrized by
the proper time ds = dτ

√
ż · ż. Meanwhile there is nothing to prevent us from following the

above line. In doing so, we come to equation (51). A closer look at the integrals of λμ over
�′(ε) and �′′(ε), representing the 4-momenta of the electromagnetic field at the instants s ′

and s ′′, shows, however, a dramatic change of the affair. Indeed, for a particle moving along a
timelike world line, we have [14](∫

�′′(ε)
−

∫
�′(ε)

)
dσμλμ =

∫ s ′′

s ′
ds

(
e2

2ε
z̈λ − 2

3
e2...

z
λ − 2

3
e2z̈2żλ

)
. (63)

Evidently the term − 2
3 e2...

z
λ

cannot be canceled by other terms of equation (51), no matter what
is the parametrization of the world line. Furthermore, the term (e2/2ε)z̈λ is divergent. For this
divergence to be absorbed by the mass renormalization, the gauge must be fixed, η = m/

√
ż · ż,

which implies that the world line is parametrized by the proper time. Accordingly, the term
− 2

3 e2z̈2żλ survives in the energy–momentum balance.
To summarize, the energy–momentum balance at a null world line amounts to the equation

of motion for a bare particle. The initial degrees of freedom do not experience rearrangement,
that is, dressed charged particles and radiation do not arise6.

5. Direct interparticle action electrodynamics

To claim that massless charged particles do not radiate is another way of stating that there are
no unconstrained field degrees of freedom. Every particle is affected by all other particles
directly, that is, without mediation of the electromagnetic field. It is therefore tempting to
assume that all field degrees of freedom can be integrated out completely without recourse to
the Wheeler–Feynman condition of total absorption [15]

A
μ
ret(x) − A

μ

adv(x) = 0. (64)

Naively, this removal of field degrees of freedom can be executed just in equation (13) using
the retarded solution (35), with a suitable regularization if required. However, this idea must
be abandoned if we are to preserve conformal invariance. The retarded Green’s function
Dret(x) = 2θ(x0)δ(x

2) is not conformally invariant due to the presence of the Heaviside step
function θ(x0). Indeed, a conformal transformation can change the order in which points are
lined up along a null ray. We are thus forced to deal with D̄(x) = δ(x2), which is specific to
the Fokker action involving both retarded and advanced signals. Meanwhile the interaction
term of the Fokker action

−1

2

∑
I

∫
dτI

∫
dτJ

∑
J (�=I )

eI eJ ż
μ

I (τI )ż
J
μ(τJ )δ[(zI − zJ )2] (65)

is devoid of conformal symmetry. To remedy the situation, the Minkowski metric ημν must
be substituted for a symmetric tensor of the form [16]

hμν(x − y) = (x − y)2 ∂

∂xμ

∂

∂yν
ln(x − y)2 = ημν − (x − y)μ(x − y)ν

(x − y)2
. (66)

6 This is reminiscent of the situation with the Maxwell–Lorentz electrodynamics in a world with one temporal and
one spatial dimension in which there is no radiation [4, 5].
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Under conformal transformations dx̄2 = σ−2(x) dx2, the index μ transforms like a covector
at the point x while the index ν transforms like a covector at the point y,

h̄μν(x̄ − ȳ) = 1

σ(x)σ (y)

∂xα

∂x̄μ

∂xβ

∂ȳν
hαβ(x − y). (67)

Now the action for a conformally invariant action-at-a-distance electrodynamics reads

S = −1

2

N∑
I

∫
dτI

⎧⎨
⎩ηI ż

2
I +

∫
dτJ

N∑
J (�=I )

eI eJ hμν(zI − zJ )ż
μ

I (τI )ż
ν
J (τJ )δ

[
(zI − zJ )2]

⎫⎬
⎭ ,

(68)

where the particle sector is chosen to be identical to that of the action (5).
It was shown in [17] that the vector potential adjunct to particle I,

AJ
μ(x) = eJ

∫
dτJ hμν(x − zJ )żν

J (τJ )δ[(x − zJ )2], (69)

is an exact solution to Maxwell’s equations (10)–(12), in which FJ
μν = ∂μAJ

ν − ∂νA
J
μ, and

all but one of the charges eI in the current jμ are assumed to be vanishing. Following the
Wheeler and Feynman’s original approach [15], one can show that the equation of motion for
a massless charged particle (3) in which Fμν is the retarded field adjunct to all other charges
derives from (68) provided that equation (64) holds.

We thus see that the Wheeler–Feynman condition of total absorption (64) remains essential
for the action-at-a-distance electrodynamics of massless charged particles. Recall that there
are two alternative concepts of radiation, proposed by Dirac and Teitelboim (for a review
see [2]). Although these concepts have some points in common, they are not equivalent.
Accordingly, (64) does not amount to the lack of radiation in the sense of Teitelboim whose
definition was entertained in the previous section.

6. Massless quarks

Consider massless colored particles, or simply massless quarks7. The Lorentz force law is
changed for the Wong force law [18],

ηz̈μ + η̇żμ = żν tr(QGμν). (70)

In other words, a particle carrying color charge Q = QaTa is affected by the Yang–Mills field
Gμν = Ga

μνTa at the point of its location zμ, as indicated by (70). We begin with the case of
a single quark, and adopt the simplest non-Abelian gauge group SU(2).

The color charge is governed by

Q̇ = −ig[Q, żμAμ], (71)

where g is the Yang–Mills coupling constant. The Yang–Mills equations read

DμGμν = 4πjν. (72)

Here, Dμ = ∂μ − igAμ is the covariant derivative, and jμ is the color current,

jμ(x) =
∫ ∞

−∞
dτ Q(τ)żμ(τ )δ4[x − z(τ )]. (73)

7 For a systematic study of a classical theory of particles interacting with non-Abelian gauge fields, the so-called
Yang–Mills–Wong theory, see [3, 5].
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Green’s function technique does not apply to the nonlinear partial differential
equations (72)–(73). We, therefore, impose the retarded condition for the Yang–Mills field
propagation, and furnish the ansatz

Aμ =
3∑

a=1

Ta(τ )(żμ�a + Rμ�a). (74)

Retracing essential steps in the Yang–Mills–Wong theory of massive quarks [3, 5], with
appropriate modifications, we find that the retarded solution to equations (71)–(73) is given
by8

Aμ = Q
żμ

ρ
. (75)

Here, Q = TaQa,Qa are arbitrary integration constants. This solution is unique, modulo
gauge terms proportional to QRμ/ρ = Q∂μτ . Equation (75) describes an Abelian field.

Anticipating that an irregular term of the field strength, similar to that defined in (39), is
responsible for the Gauss’ surface-integration procedure, we identify Q with the color charge
Q appearing in (73). Because equation (72) is covariant under the gauge transformations

Aμ → �

(
Aμ +

i

g
∂μ

)
�†, jμ → �jμ�†, (76)

one can find a unitary matrix � to diagonalize the Hermitian matrix jμ. Accordingly, the
vector potential (75) is transformed to the form involving only commuting matrices which
span the Cartan subalgebra. In this case, that is, for the gauge group SU(2), if the color basis
elements Ta are expressed in terms of the Pauli matrices Ta = 1

2σa , the diagonalized color
charge is Q = 1

2σ3Q
3.

The regular part of the gluon field strength is given by

Gμν = RμWν − RνWμ, (77)

where

Wμ = Q

ρ2

(
−żμ z̈ · R

ρ
+ z̈μ

)
. (78)

Thus, in M4, a massless quark generates an Abelian field whose regular part is a null field,
∗GμνG

μν = 0,GμνG
μν = 0.

By repeating what was done in section 4, we find that a massless quark does not radiate.
This consideration can be extended to the case of N massless quarks and the unitary group

SU(N ) with arbitrary N and N � 2. The vector potential

Aμ =
N∑

I=1

QI

ż
μ

I

ρI

(79)

represents the generic retarded Abelian solution to the Yang–Mills equations. Here,

QI =
N−1∑
a=1

ea
I Ha, (80)

where ea
I are arbitrary real coefficients. The generators Ha belong to the Cartan subalgebra of

the Lie algebra su(N ).
Similar to classical electrodynamics of massless charged particles, the Yang–Mills–Wong

theory of massless quarks is invariant under C(1, 3), and hence defies its formulation as an
ordinary Lagrangian system in R1,3.

8 The procedure of finding �a and �a resembles that performed in section 3 in many ways.
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7. Discussion and outlook

For comparison, we briefly review the Yang–Mills–Wong theory of massive quarks.
The field sector of this theory is invariant under C(1, 3), but this invariance is violated in

the particle sector. There are two classes of retarded solutions Aμ to the Yang–Mills equations,
non-Abelian and Abelian [3, 5]. To be specific, we refer to the case of N massive quarks and the
gauge group SU(N ), with arbitrary N such that N � N + 1. The gauge group of non-Abelian
solutions is spontaneously deformed to SL(N , R). These solutions represent gauge fields of
magnetic type. These solutions involve terms which are explicitly conformally non-invariant.
An accelerated quark gains (rather than loses) energy by emitting the Yang–Mills field of this
type. A plausible interpretation of the solutions with deformed gauge invariance is that such
configurations describe Bose condensates of gluon fields in the hadronic phase. By contrast,
the gauge group of Abelian solutions is SU(N ). These solutions are conformally invariant
constructions. They represent gauge fields of electric type. An accelerated quark loses energy
by emitting the Yang–Mills field of this type. These Abelian solutions are associated with the
QGP vacuum.

The Yang–Mills–Wong theory of massless quarks is perfectly invariant under C(1, 3).
There are only Abelian solutions to the Yang–Mills equations, equation (79). This is because
only such constructions are compatible with the conformal symmetry requirement. The regular
part of the field, equations (77)–(78), represents a null-field configuration. Accelerated quarks
neither gain nor lose energy by emitting this Yang–Mills field. It is natural to think of such
solutions as Bose condensates of gluon fields in QGP.

Conceivably the Yang–Mills–Wong theory of massless scalar quarks leaves room for the
direct action formulation

S = −1

2

N∑
I=1

∫
dτI

{
ηI ż

2
I +

N∑
J=1

tr(QIQJ )

∫
dτJ hμν(zI − zJ )ż

μ

I (τI )ż
ν
J (τJ )δ[(zI − zJ )2]

}
.

(81)

This Fokker-type action results from the fact that the Yang–Mills sector is linearized (that is,
becomes essentially the same as the Maxwell sector) when the color dynamics is confined to
the Cartan subgroup. Maintaining the color dynamics in this Abelian regime is controlled by
conformal invariance.

Equation (81) can form the basis of a first-quantized path integral description of this
system. It has long been known [19–21] that, for all processes in scalar QED in which the
total number of real photons is zero, the conventional current–field interaction used in the S
matrix for a collection of species of particles, given by

∑
I

∫
d4x j

μ

I (x)Aμ(x), (82)

may be replaced by the direct current–current interaction given by

1

2

∑
I

∑
J

∫
d4x d4yjIμ(x)DF(x − y)j

μ

J (y) (83)

without change in the results. Here, DF(x) is the Feynman propagator. It is related to the
Fokker propagator D̄(x) = δ(x2) by

DF = D̄ + 1
2 (D+ − D−), (84)
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where D+ is the positive frequency part of the Pauli–Jordan function D = Dret − Dadv. With
this decomposition, we have two sets of terms. The first set

1

2

∑
I

∑
J

∫
d4x d4yjIμ(x)D̄(x − y)j

μ

J (y) (85)

will be recognized as the conventional Fokker coupling between the charged currents. The
second set of terms can be brought into the form

1

2

∑
I

∑
J

∫
d4x d4yjIμ(x)D+(x − y)j

μ

J (y). (86)

This expression must in some way represent the response of the universe. For a system
enclosed in a light tight box, (86) does not contribute to the S matrix [20], and, therefore, (83)
and (85) give the same results.

Turning to massless quarks, similar reasoning shows that the contribution of

1

2

∑
I

∑
J

tr(QIQJ )

∫
dτI

∫
dτJ hμν(zI − zJ )ż

μ

I (τI )ż
ν
J (τJ )D+(zI − zJ ) (87)

to the S matrix in quantum chromodynamics must vanish. Now a QGP lump plays the same
role as the light tight box in the Wheeler–Feynman electrodynamics. Hence, substituting the
Fokker propagator D̄ by the Feynman propagator DF in (81) will be of no consequences.

With DF in place of D̄, one may perform the Wick rotation. Then all world lines in the
path integral become curves in Euclidean spacetime R4. The conformal group acting on this
arena is C(4). The only remnant of the initial conformal structure in this Euclideanized picture
is the conformal metric hμν defined in (66). A consistent Euclidean direct action formulation
reads9

SE = 1

2

N∑
I=1

∫
dτI

{
ηI ż

2
I +

N∑
J=1

tr(QIQJ )

∫
dτJ ż

μ

I (τI )
hμν(zI − zJ )

(zI − zJ )2
żν
J (τJ )

}
. (88)

A more realistic model of QGP arises if quark spin is taken into account. For this purpose
we can conveniently follow the much-studied procedure [22].

To sum up, we have shown that, when moving with acceleration, charged and colored
zero-mass particles do not radiate. More generally, classical electrodynamics of massless
charged particles and the Yang–Mills–Wong theory of massless quarks do not experience
rearranging their initial degrees of freedom into dressed particles and radiation. We have
found that a conformally invariant version of the direct interparticle action theory can be
formulated, in the manner of Wheeler and Feynman, for both charged and colored massless
particles.
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9 Note added in proof. Strickly speaking, the action (88) represents a consistent Euclidean dynamics only in the
context of the Feynman’s path integral approach. Indeed, turning to the principle of least action, we come to equation
(1) which implies that every world line Z

μ
I (τI ) in R4 is actually reduced to a point, and hence the classical history

of this Euclideanized system is trivial.

16



J. Phys. A: Math. Theor. 41 (2008) 465401 B P Kosyakov

Appendix A

In this appendix, we show that the regular part of the electromagnetic field generated by a
massless charged particle F r

μν = RμVν − RνVμ does not contribute to the flux through a
surface enclosing the charge. We omit the label ‘r’, and consider the electric and magnetic
fields E and B in a particular Lorentz frame in which

żμ = (1, v), z̈μ = (0, a), Rμ = r(1, n), n2 = 1. (A.1)

By (1) and (2),

v2 = 1, v · a = 0. (A.2)

Using (A.1), we write

ρ = R · v = r(1 − n · v), R · z̈ = −r(n · a), (A.3)

and

Vμ = q

r2(1 − n · v)2

(
n · a

1 − n · v
,−v

n · a

1 − n · v
− a

)
. (A.4)

Therefore, the electric field Ei = F0i = R0Vi − RiV0 is

E = q

r(1 − n · v)2

[
(n − v)

n · a

1 − n · v
− a

]
. (A.5)

It is clear that E is regular for any direction, except for n = v, and that E · n = 0.
Likewise, the magnetic field Bi = − 1

2εijkF
jk = εijkV

jRk is

B = q

r(1 − n · v)2
n ×

(
v

n · a

1 − n · v
+ a

)
, (A.6)

whence it follows that B · n = 0.
From (A.5) and (A.6) it will be noted that the electric and magnetic fields are of the same

strength,

|E| = |B| = q|a|
r(1 − n · v)2

, (A.7)

and perpendicular to each other, as might be expected. We thus have a triplet of mutually
orthogonal vectors E, B and n. Since n is normal to the surface enclosing the charge, the
infinitesimal fluxes of E and B through the appropriate surface element are vanishing.

It remains to see whether the fluxes of E and B through a surface enclosing the singular
ray along v are zero. Let the charge be located at the origin, and v be parallel to the z-axis.
We take a tube Tε of small radius ε enclosing the singular ray, and denote its normal by u. We
attach a hemisphere Sε of radius ε, centered at the origin, to the tube Tε . A point x on Tε is
separated from the origin by r = √

z2 + ε2. The unit vector n directed to x is represented as

n = 1

r
(zv + εu), (A.8)

so that

n · a = ε

r
(u · a). (A.9)

Introducing zenith and azimuth angles ϑ and ϕ, we obtain u · a = a sin ϑ cos ϕ.
With this preliminary,

E · u = qz

(r − z)2
(u · a) = qaz

(r − z)2
sin ϑ cos ϕ. (A.10)
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Integrating (A.10) over ϕ from 0 to 2π , one finds that the total flux of E through Tε equals zero.
It is interesting that there are both flux flowing inward the tube and flux directed outward from
it, which exactly cancel. The flux of E through the hemisphere Sε is zero because E · n = 0.
The flux through the cross section of the tube Tε disappears in the limit r → ∞ due to the
suppressing factor r−1. However, we must handle this divergent integral with caution. We use
polar coordinates � and ϕ so that r2 = �2 + z2, and introduce a cutoff parameter δ to bound
the integration over � within the limits ε � � � δ. We then complete the definition of this
surface integral by letting the parameter z to go to ∞ before removing the cutoff δ → 0. This
makes it clear that the flux of E through the cross section of Tε is indeed vanishing.

The same statement holds for the total flux of B.

Appendix B

In this appendix, we show that integrating the stress–energy tensor over the future light cone
C+ drawn from a point on the world line gives zero. We first consider the term ir

μν built from
F ir

μν . By (39),

F ir α
μ F ir

αν +
1

4
ημνF

ir
αβF ir αβ = e2 (ż2)2

ρ4

(
cμżν + cν żμ − ż2cμcν − 1

2
ημν

)
. (B.1)

With the surface element on C+,

dσμ = cμρ2 dρ d�, (B.2)

we have

ir
μν dσ ν = e2 (ż2)2

8πρ2
cμ. (B.3)

We retain only the term of the second order in ż2, and drop higher order terms.
To define the corresponding 4-momentum of the electromagnetic field P ir

μ , we must
introduce a regularization. A convenient coordinate-free regularization is a cutoff that renders
the future light cone C+ with vertex at zμ(τ̂ ) a truncated light cone C+(ε) whose truncation
surface arises from the intersection of this light cone with a hyperplane � perpendicular to
the world line zμ(τ ) at the instant τ the world line goes through �. In response to the solid
angle integration of ρ−2, the denominator gains the factor ż2 just as it did in establishing
(45). However, this factor cannot kill the factor (ż2)2 in the numerator, and hence the cutoff-
regularized 4-momentum, involving the overall zero factor ż2, is vanishing. In the limit of
cutoff removal ε → 0, we have P ir

μ = 0.
Consider the term of stress–energy tensor containing mixed contribution of F r

μν and F ir
μν .

By (37)–(40) and (43),

F ir α
μ F r

αν + F r α
μ F ir

αν = e2 ż2

ρ3
[(cμVν + cνVμ) − 2cμcν(ż · V )], (B.4)

and so

F ir αβF r
αβ = 0. (B.5)

Contracting (B.4) with the surface element dσ ν , defined in (B.2), gives(
F ir α

μ F r
αν + F r α

μ F ir
αν

)
dσ ν = 0. (B.6)

This completes proof of our assertion.
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